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Andrew S. Richardson, John M. Finn, T-5 There are good reasons to use variable time steps in ODE integrators, for example symplectic integrators 
for Hamiltonian systems. However, variable time steps based on an error estimator can introduce paramet-
ric resonances and, therefore, numerical instabilities. In this note we describe this process in the simplest 
terms, and indicate how these parametric instabilities can be avoided.

There are two commonly used approaches for numerical integration of 
Hamiltonian equations of motion. The first uses a symplectic 

integrator (a variational integrator1), which preserves the phase space 
structure of the system and can, for many purposes, be fairly low order 
in the time step. (Symplectic integrators are a special case of mimetic 
differencing.) The second approach is to use a high order but non-
symplectic integrator, typically with an adaptive time step to obtain the 
highest accuracy. It is then argued that the loss of phase space structure 
is small due to the high accuracy of the scheme. If the time interval over 
which the integration is done is limited, this approach may be justified. 
For particle-in-cell (PIC) codes, low-order symplectic integrators are 
very commonly used, and those used are typically second-order 
accurate. When possible (when the Hamiltonian is separable, for 
example in electrostatic problems), leapfrog or Verlet integration is 
used. (In the presence of magnetic fields, a modification leads to the 
Boris algorithm.) In more general, non-separable, cases [1,2], modified 
leapfrog (ML) has been used effectively.

There has been work in recent years related to using 
adaptive-time-step-symplectic integrators, with 
disappointing results. The difficulties have arisen in the 
form of numerical instabilities. We have recently 
identified the major problem as the occurrence of an 
instability associated with parametric resonance.

1The distinction relates to the method of derivation. For the former, 
one goes from the Lagrangian to the Hamiltonian in the continuum 
and then discretizes, making sure that the phase space structure is 
preserved. For the latter, one discretizes the Lagrangian and does 
the variation on the discretized action. The resulting equations 
automatically preserve phase structure. 

To illustrate, we begin with the harmonic oscillator, with Hamiltonian  
H = p2/2m + mω0

2q2/2. With P = p/ √mω0,  Q = √mω0q, we have  
H = ω0(P2 + Q2)/2. First order leapfrog for this separable system gives:

where for this illustration the time step hn = h(tn) depends on time 
explicitly. In the actual case discussed below, the time step h(Q, P) is 
determined by an error estimate and depends on time implicitly through 
Q(t), P(t). By the method of modified equation analysis, we find that this 
discrete system is approximated by:

or 

If we take h(t) to vary sinusoidally, ∼ h0(1 + εcosω1t), the term  
ω0h(t)QP/2 in the Hamiltonian shows the presence of a first-order 
parametric resonance, giving instability for |ω1/ω0 −2|< αε. Numerical 
investigations indeed show instability in this range. (The factor 
1 + ω0

2h2/6) multiplying the overall factor P2 + Q2 does not lead to a 
second-order parametric instability.)

Figure 1 shows the phase space for the quartic oscillator H = p2/2m + 
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Fig. 1. First-order Leapfrog, h(t) = h0 
(1+ε sin(ω t)), h0=0.1, ε=0.5, ω=2
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q2/2 + q4/2 obtained with first-order leapfrog integration using  
h(t)= h0(1 + εcosω1t). A set of nonlinear resonances or islands is visible 
on the surface where the nonlinear oscillator frequency is equal to ω1/2, 
a localized parametric resonance. The width of these islands' scales is 
ε1/2, as expected. For comparison, the analogous plot using Crank-
Nicolson (CN) integration (known to be symplectic but also time-
centered) shown in Fig. 2 has much thinner islands, and a modified 
equation analysis of CN shows only higher-order parametric resonances. 
Staggered, or symmetrized, leapfrog also has only second-order 
parametric instabilities, and has numerical results similar to those 
shown in Fig. 2 for CN. However, recent work has shown that leapfrog 
(and ML for non-separable systems) has one great advantage over CN or 
other methods in a PIC code—it allows all the particle positions to be 
updated before the code solves for the field [2]. For CN and many other 
schemes, the fields need to be found after each particle is moved, a 
terrible disadvantage. Thus, it appears that the best strategy involves 
using leapfrog, or ML if necessary, to second-order accuracy.

In real problems, the time step is not given explicitly as a function of 
time, but rather computed from an error estimate, which depends on the 
position in phase space. (Leapfrog requires modification to remain a 
symplectic integrator with h = h(Q, P), but that is easily done.) For 
example, for the Harmonic oscillator above the error estimate leads to a 
time step depending quadratically on Q, P, leading to a cos2φ 
dependence of the time step h. (The quantities (φ, J =(P2 + Q2)/2) are 
action-angle variables.) This therefore leads in first-order leapfrog to a 
first-order parametric resonance exactly like the ω1/ω0 = 2 resonance 
above.

For applications such as PIC in which CN cannot be used, but a 
symplectic integrator is needed, the best strategy is this—use a higher-
order symplectic integrator such as symmetrized ML and limit the time 
step size, and perhaps the variation of the time step, to minimize the 
effects of parametric resonance.

One other point that should be made is that the parametric instabilities 
described above apply also to non-symplectic integrators. However, the 
instabilities may not be recognizable as such because non-symplectic 

integrators can introduce damping, and the parametric instability would 
need to overcome this damping to be observable.

Fig. 2. Crank−Nicolson, h(t) = h0 (1+ε 
sin(ω t)), h0=0.1, ε=0.5, ω=2.
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